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Artificial Neural Networks (ANN) have often been used successfully in problems of
classification. Their main drawback is the long training times required particularly for
problems of large dimensionality. This is in contrast to the human vision system which
is capable of learning from a small number of examples. Another problem with ANNs is
the lack of any theoretical guidance concerning the choice of number of nodes, activation
functions etc. In this paper we first formulate the problem of object labelling and classifi-
cation on firm mathematical foundations, within the framework of probabilistic relaxation
and then we map it onto the conventional architecture of a multilayer perceptron. This
way we can give definite interpretation to the weights, response functions and nodes of
the system with specific guidance concerning the choice of the various functions and pa-
rameters. Further, we end up with a system which requires very few samples for training,
thus emulating the human vision system in that respect.

1. INTRODUCTION

The pace at which pattern classification algorithms have been successfully applied to
new problems increased dramatically over the past few years. Much of this activity has
been motivated by developments in the field of artificial neural networks (ANN). Good
overviews of these algorithms are available in [1-5]. One important characteristic of
neural network classifiers is that network outputs provide estimates of a posteriori class
probabilities [6] required in a Bayesian minimum error classifier [7]. Indeed, if we view
neural networks as a universal methodology for function approximation, then in the case
of pattern classification problems the functions to be approximated during training are
the a posteriori class probabilities.

The function approximation viewpoint has recently thrown light on empirical behaviour
of neural networks [8-11]. The findings have particularly dramatic implications on large
scale problems (inputs of high dimensionality). Such problems notably arise in image and
vision processing, but even more modest applications raise the question of the practica-
bility of effectively controlling the approximation and estimation errors. The pragmatist’s
answer to these issues is to resort to heuristics in arbitrarily breaking the classification
problem into a multistage process with simple architectures servicing each stage. Such
an approach is likely to compromise the optimality of the performance. In any case it
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does not avoid the requirement for interminable training efforts to reach a reasonable
solution and for a multitude of architectural alternatives to be considered in order to gain
confidence in the network being able to extract all the relevant information.

These drawbacks are conspicuously in contrast with the functional characteristics of the
human nervous system which can learn a pattern from one or a small number of training
samples. The learnt model is refined gradually only to cope with pattern class overlaps
and ambiguity. The relative importance of stimuli in class definition is rapidly established
and presumably reflected in the synaptic strengths.

In a recent work we have developed a Bayesian framework for designing cooperative
decision making processes which exploit observational evidence and contextual informa-
tion relating to objects to be classified [12,13]. This work evolved from earlier results in
contextual decision making [14-16]. Most importantly, the pattern classification processes
developed have been shown to map on conventional artificial neural network architectures
[17,18]. The objective of the work was to establish a link which would facilitate the
implementation of the cooperative decision making processes on special purpose hard-
ware neural net architectures that are becoming available. However, the implication of
the relationship appears to be reaching far beyond this original goal. In this paper we
demonstrate that it can offer an analytical route to designing neural networks as far as
the number of nodes and layers, node interconnections, the choice of nonlinearity for the
activation function and feedback mechanisms are concerned. An equally important result
of the work is that the proposed network training schemes can overcome the theoreti-
cal requirements imposed by brute force function approximation methods. The training
schemes allow the ANN designer to obtain a rough estimate of the ANN network weights
just from one or very few examples of pattern classes to emulate the capability of the
human nervous system.

The principal idea of the approach is to represent each pattern to be classified in terms
of pattern primitives. The pattern classification process then involves the identification
of these primitives. The benefit of introducing pattern primitives is that one can then
describe the measurement process model in terms of the conditional distributions rather
than the unconditional ones, which should dramatically reduce the order of interactions
of the input stimuli. At a first glance this may appear to be possible only at the expense
of exponential complexity of interpretation, but it has been shown [12] that this is not the
case. The recognition problem complexity is at most of second order polynomial in terms
of the number of these primitives and it is believed it can be substantially reduced by
means of pruning or by the introduction of dictionaries of admissible label configurations.
As a result the probabilistic analysis of the pattern classification problem then allows the
appropriate structure of the ANN to be identified, together with the activation function
nonlinearities. It also provides guidelines for the initial choice of network weights and a
mechanism for their adaptation during training.

The problem formulation involves the specification of pattern primitives, their relations
and their respective distributions. The a posterior probability functions of pattern prim-
itive labellings are first developed by means of probability calculus. Thus in contrast
to conventional approaches these a posteriori probability functions are not approximated
directly. Instead, these functions are expressed in terms of simple components that define
and map on a neural net architecture.



We show that it is possible to exploit the relationship between the conditional proba-
bility distributions of the relational measurements describing pattern primitives and the
neural network weights. The nature of the relationship is first established. The network
weights are then determined from the statistical description of these measurement (input
stimuli) distributions. The statistical descriptors are obtained during training by means
of standard statistical inference techniques.

The paper is organised as follows. First, two basic formulations of the problem of
labelling networks of objects are introduced in Section 2. The various contextual decision
making schemes that can be developed from the object centered formulation are overviewed
in Section 3. In Section 4 we outline how object centered labelling schemes map on a
multilayer perceptron-like architecture. Finally, Section 5 concludes with a summary of
the paper.

2. PROBLEM FORMULATION

Let us consider a set of objects a;,j = 1,..., N arranged in a network with a particular
neighbourhood system.

Each object a; has an associated measurement vector x;. Each component of vector x;
denotes one of three types of measurements:

1. Binary relation measurements A%, k=1,2,...,m between the j” and i"* objects.

2. Unary relation measurements yé, l=1,2,...,r from which the binary relations are
derived.

3. Unary relation measurements v;, it = 1,2,...,n which augment the observational

evidence about node j but do not serve as a basis for deriving binary relation
measurements Afz

Let us arrange these measurements into vectors as follows:

Aj
A,
A = ii=1) (1)
T A
[ Ajv
where A;; = [A%j, ..., A", For the unary relations we have y; = [yj,...,y;]" and
v; = [vj,...,v7]". Thus x; is an [m(N — 1) + r 4 n] dimensional vector which can be
written as
Vi
Xj= |V (2)
A

J
We wish to assign each object a; a label ;. Following the conventional Bayesian
approach, object a; would be assigned to class w, based on the information conveyed



by measurement vectors v; and y; according to the minimum error decision rule [6]. In
contrast, here we wish to decide about label #; using not only the information contained
in unary relation measurements relating to object a; but also any context conveyed by
the network. In other words we wish to utilise also the binary relation measurements, i.e.
the full measurement vector x; plus all the information about the other objects in the
network contained in x;, Vj # ¢. This is a general statement of the problem but in order
to develop contextual labelling schemes our formulation will have to be somewhat more
precise.

The first important issue to settle is whether we wish to aim at object centered or
message centered interpretation. In object centered interpretation the emphasis is on one
node at a time. Contextual information is used to reduce the ambiguity of labelling a
single object. Note that object centered interpretation does not guarantee that the global
interpretation makes sense. For example, individually most likely object categories in a
character recognition problem will not necessarily combine into valid words. The use of
context merely reduces the chance of the global labelling being inconsistent.

In contrast, message centered interpretation is concerned with getting the message
conveyed by sensory data right. In our text recognition problem the main objective of
message centered labelling would be to label characters so that each line of text gives a
sequence of valid words.

The choice between object centered and message centered interpretation will depend
in the first instance on the application in hand. For example, if we search for a specified
object in an image without requiring to understand the entire content of the image,
object centered interpretation might be most appropriate. On the other hand, if global
understanding of sensory data is at stake, the labelling task should be posed as a message
centered interpretation problem.

Generally speaking, in message centered interpretation we search for a joint labelling
01 = wy,, 0> = wy,,...,0 = wy, which explains observations x;,Xs,...,xy made on the
objects in the network. The most appropriate measure of fit between data and interpreta-
tion (but by no means the only one) is the a posteriori probability P(6; = wy,,...,0y =
Wyy|X1,...,xn). For the sake of brevity we shall denote this probability function as
P(by,...,0n| X1,X2,...,xy) whenever this short hand notation does not compromise
the clarity of exposition. The Bayesian approach of maximizing a posteriori probability
(MAP) of joint labelling which is referred to in the literature as MAP estimation amounts
to the following decision rule:

assign  0; = wy,,...,08 = wp, if

PO, = wp,,....0n8 =woy|X1,...,XNy) = mazq,  aoyP01,....0§8X1,...,XN) (3)

where €); is the set of labels admitted by object a;. For simplicity we shall assume that
Vi, Q; = {wg, w1, ..., wn} =, where wy is the null label used to label objects for which
no other label is appropriate.

The object centered counterpart computes instead P(0; = wy,|X1,X2,...,Xy), the a
posteriori probability of label 6; given all the observations. The main difference between
message and object centered interpretation can be brought out by expressing both proba-



bilities using the Bayes formula. Starting with the a posteriori probability of joint labelling
p(Xl,...,XN‘gl,...,QN)P(Hl,...,gN) (4)

p(X1,. .., XN)
we note that for given observations the joint probability density function value in the
denominator is fixed and therefore the left hand side is proportional to the product in
the numerator. The first term of the product, the conditional joint probability density
function of measurement vectors X1, ..., Xy models the measurement process whereas the
second term embodies our a priori knowledge of the likelihood of various combinations of
labels occurring. It is our global, world model.
For the object centered labelling we can write

p(Xla ce :XN|01' = u))F)(G’L = CU)

p(X1,. .., XN)

P(Gl,...,9N|x1,x2,...,xN) =

(5)

P(9i=w|x1,...,xN) =

where P (f; = w) is the a priori probability of label 6; taking value w. Again the denomi-
nator in (5) can be dismissed. Expanding the first term of the numerator over all possible
labellings in the usual fashion, i.e.

p(X1,. .., XN|0; = w) =

:Z Z Z ...Zp(xl,...,XN,Hl,...Bi_l,HiH...,HN\Hi:w)
Q1

Qi—1 Qi1 QN

:Z . Z Z . .Zp(Xl, Ca ,XN|01, . GZ:LU .. .,GN)P(GD . ..01',1,9141 . .,GN‘GZ':W)
1951

Qi—1Qi41 QN
(6)
we find

P(9i=w|x1,...,xN) =

_ Yo,y P, XNl i =w . ON)P(6,. 0 =w...,0) ()

p(X1,. .., XN)
Thus computing the probability of a particular label w on a single object a; amounts
to scanning through all the possible combinations of labels 64, ..., 0y with label 8; set to

w and summing up the corresponding products of the respective joint measurement and
label probabilities.

Inspecting the expressions for P(fy,...,0x|x1,Xs,...,xy) and P(6;=w|x;,...,Xy) in
(4) and (7) respectively reveals that they are both defined in terms of the same ingredi-
ents, namely the a priori probability distribution of joint labelling, P(f,...,60y) and the
conditional probability density function p(xy,...,xy|01,...,0y). It is apparent that for
any practical value of N and M it will not be feasible to apply techniques of statistical in-
ference to estimate these probability distributions. However, in many practical situations
simplifying assumptions can be made to make the computation of the a posteriori proba-
bilities feasible. In particular, an important and physically realistic assumption regarding
the unary measurement process distribution is that the outcomes of measurements are
conditionally independent.

N

p(Vi,y1 - s VN yN |01, 0 On) = [ p(vi. yil6; = wp,) (8)
=1



Also, for binary relations we assume that

p(Aﬂ, A ;AiN‘Gla e 01', ceey GN) = Hp(AU‘G“ 0]) (9)
J#i

Finally, the idea of a dictionary model or a Markov random field model [12-15] can be

used to simplify the prior probability of joint labelling P(6;,...0; = w...,0y).

3. PROBABILISTIC RELAXATION

Under some mild conditional independence assumptions concerning measurements x;, y;
and A;;, Vj the object centered labelling formulation (7) leads to an iterative probability
updating formula [12]:

PO (g, i) = T i) Q6 ) (10)

‘ ZwAEQ P (Hi%wA) Q(n) (Gi%wA)

where P(”)(Hi < w) denotes the probability of label wy, at object a; at the nt" iteration
of the updating process and the quantity Q™ (6; < wy expresses the support the label
0; < w, receives at the n'* iteration step from the other objects in the scene, taking
into consideration the binary relations that exist between them and object a;. After the
first iteration (n=1) the computed entity is the contextual a posteriori class probability
P(0; = wp,|x1,X2,...,Xn). As n increases, the updating scheme drives the probabilistic
labelling into a hard labelling.

The support Q™ (6; = wy,) is defined as

1
- T suta| T

p
W ;. jEN; ﬁ JEN; ﬁ( ]
xP (0; = wy,,Vj € N;) (11)

where p (Aij|0i = wy,;, 0; = ng) is the compatibility coefficient quantifying the mutual
support of the labelling (6, = wy,,0; = ng). N; denotes the index set of all nodes
excluding the node i, i.e. N; = {1,2,...,i—1,i+1,..., N}. It is worth noting that, when
binary relations are not used, the support function (11) becomes the standard evidence
combining formula developed in [14], i.e.

QM (6 = wy,) =
_ 1 P (9]' = ng) B '
- wej,zjiwi p (6; = wy,) {Jg p (6, =w,) } x P (0; = ws,,Vj € N;) (12)

On the other hand, when no additional unary relation measurements are available apart
from the set used for generating the binary measurements, the support reduces to

— Z m{Hp(Aij|9i=wa,.,9j:ng)}P(Bj=w9j,VjeNi) (13)

JEN;



The probability updating rule (10) in this particular case will act as an inefficient
maximum value selection operator. Thus the updating process can be terminated after
the first iteration, the maximum contextual a posteriori label probability selected and set
to unity while the probabilities of all the other labels are set to zero.

The support function (11) exhibits exponential complexity. In practice its use, depend-
ing on application, could be limited only to a contextual neighbourhood in the vicinity
of the object being interpreted. Such a measure is appropriate for instance in the case
of edge and line postprocessing, where the objects to be labelled are pixel sites. A small
neighbourhood, say a 3 by 3 window may be sufficient to provide the necessary contex-
tual information. In any case, by iteratively updating the pixel label probabilities using
formula (10) contextual information would be drawn from increasingly larger neighbour-
hoods of each pixel.

A more dramatic, complementary reduction in the computational complexity is achieved
by noting that in practice many potential label configurations in the contextual neigh-
bourhood of an object are physically inadmissible. By listing the admissible labellings in
a dictionary, the above support function can be evaluated by summing up only over the
entries (Gj = ng,Vj € Ni) , Vk in the dictionary, i.e.

Q™ (0; = wy,) =
) 1 P ( —w ])p (AU\G 0; = ng)
a o1 D(0i = w,) {ygv (91 ) } "
xP (0; = wf ,Vj € N;) (14)

where Z(wy,) denotes the number of dictionary entries with label 6; set to wy,.

In many labelling problems neither of the above simplifications of the support function
is appropriate. For instance, in correspondence matching tasks or object recognition all
features of an object interact directly with each other. Moreover, without measurements,
no labelling configuration is a priori more likely than any other. Then it is reasonable to
assume that the prior probability of a joint labelling configuration can be expressed as
P (0; =wp,.Vj € N;) = Hp@—w) (15)

JEN;
Substituting (15) into (11) and noting that each factor in the product in the above ex-
pression depends on the label of only one other object apart from the object a; under
consideration, we can simplify the support computation as

Q™ (0; + wy) H Z pr (0 <—ws) p(Aij | i wa, 0 +wp) (16)
JEN; W5EQ

It is interesting to note that through this simplification the exponential complexity of the
problem is eliminated.

The iteration scheme can be initialised by considering as P(*)(f; <—w,,) the probabilities
computed by using the unary attributes only, i.e.

Vi,Yi) (17)

We discuss this initialisation process in detail elsewhere [12].

U)(Gi%wn) = P(0i<—wn




4. NEURAL NET IMPLEMENTATION

The aim of this section is to demonstrate how the cooperative processes discussed in
Section 3 can be mapped on a neural net architecture. The purpose of the mapping is at
least twofold. First of all, neural net computation has inspired and motivated consider-
able activity in specialist hardware and software architecture design and implementation.
Software, and hardware systems, including VLSI chips, have been developed to implement
various families of neural networks. A successful mapping of contextual decision making
processes on such systems would facilitate their wide applicability.

The second, and perhaps more significant purpose is to argue that the mapping pro-
cess could offer a route to neural network design which is not plagued by the typical
problems associated with the development of neural network solutions to pattern classifi-
cation tasks: lack of guidelines for the choice of architecture and node connectivity, lack
of data, unacceptably long training phase, and last but not least, the lack of criteria for
the selection of the node activation functions and for the weight initialization.

Rather than attempting a comprehensive coverage of all the cooperative processes dis-
cussed in the paper, we shall illustrate the basic ideas on a specific contextual labelling
algorithm. In particular, we shall consider the probabilistic relaxation scheme in (10)
with the support function given by formula (16). The neural network performing the
same computation is presented in Figure 1.

It is basically a multilayer perceptron with two main layers and an auxiliary layer which
performs a normalisation computation to maintain the network outputs in the zero - one
range and ensuring that the outputs representing label excitation for each object primitive
sum up to unity. There are only N such auxiliary units as there are N object primitives to
be labelled. The inputs P;; to the multilayer perceptron are computed by a noncontextual
artificial neural network which at its input is stimulated by unary relation measurements
observed for each object primitive. We shall not dwell on the methodology that can be
used for designing such a neural network as the number of unary measurements one deals
with is normally relatively small and therefore the neural net design problems identified
earlier are not applicable. The outputs P;; of this initializing network correspond to the a
posteriori (noncontextual) label probabilities for the object primitives based on the unary
relations.

The main network has the normal characteristics of a typical multilayer perceptron
design. The number of units in the second layer expands whereas for the final layer it
contracts. In our design the number of output units is the same as the number of input
units to the network with a separate unit for each object primitive/label combination.

The weights applied to the links between the input nodes and the nodes of the second
layer are defined by the binary relation probabilities which can be easily estimated during
training by techniques of statistical inference rather than weight adaptation. The output
of each node qzjk represents the support for label £ on object primitive j from object
primitive i. Note that the activation function of the units in the second layer is the log
function and not the usual sigmoid. The connections from the second layer to the third
layer have no weights associated with them. The activation function of the units in this
third layer is the exponential function.

A distinguishing characteristic of the network is the feedback link from the normalised
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Figure 1: Multilayer perceptron implementation of the probabilistic relaxation scheme

with the support function given by equation (16)



output to the input. If this link is broken, the output units generate the contextual
probabilities of object primitive labelling corresponding to a single iteration of the label
updating process in (10). The feedback forces one of the outputs associated with each
object primitive to unity and all the others to zero.

We have thus demonstrated that a neural network for a complex pattern classification
problem can be designed by analysing the nature of the problem first. The analysis
makes it possible to incorporate realistic assumptions into the solution of the problem.
This in turn often facilitates a dramatic reduction in complexity of the classification
problem. Thus instead of having to approximate a posteriori probability functions in
high dimensional observation spaces for which a massive architecture of unknown node
connectivity would be required, one can express these a posteriori probabilities in terms
of functions of simple components. This explicitly specifies the required architecture of
the neural network, node connectivity and the functional form of the activation functions.
But even more importantly, the training of such a network becomes a simple task of
inferring the probability distributions of the relevant measurements in low dimensional
spaces. A first guess of these distributions can easily be made from the presentation of
very few prototypical patterns to the system. In this sense the training capability of the
proposed approach emulates closely that of the human central nervous system which also
can learn complex patterns very efficiently from just a few experiences.

5. CONCLUSIONS

In the paper, it was demonstrated that probabilistic relaxation labelling processes can
be mapped onto a neural net architecture, in particular the multilayer perceptron. This
has the important implication that cooperative decision making schemes can provide
an approach to designing artificial neural networks with the benefit of simple training,
and of the ANN architecture and activation functions being uniquely specified. The
design approach appears to offer an attractive alternative to the conventional ANN design
techniques.
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