
Analytical approaches to the neural net architecture design�W J Christmas, J Kittler and M PetrouDepartment of Electronic and Electrical EngineeringUniversity of SurreyGuildford GU2 5XH, United KingdomArti�cial Neural Networks (ANN) have often been used successfully in problems ofclassi�cation. Their main drawback is the long training times required particularly forproblems of large dimensionality. This is in contrast to the human vision system whichis capable of learning from a small number of examples. Another problem with ANNs isthe lack of any theoretical guidance concerning the choice of number of nodes, activationfunctions etc. In this paper we �rst formulate the problem of object labelling and classi�-cation on �rm mathematical foundations, within the framework of probabilistic relaxationand then we map it onto the conventional architecture of a multilayer perceptron. Thisway we can give de�nite interpretation to the weights, response functions and nodes ofthe system with speci�c guidance concerning the choice of the various functions and pa-rameters. Further, we end up with a system which requires very few samples for training,thus emulating the human vision system in that respect.1. INTRODUCTIONThe pace at which pattern classi�cation algorithms have been successfully applied tonew problems increased dramatically over the past few years. Much of this activity hasbeen motivated by developments in the �eld of arti�cial neural networks (ANN). Goodoverviews of these algorithms are available in [1{5]. One important characteristic ofneural network classi�ers is that network outputs provide estimates of a posteriori classprobabilities [6] required in a Bayesian minimum error classi�er [7]. Indeed, if we viewneural networks as a universal methodology for function approximation, then in the caseof pattern classi�cation problems the functions to be approximated during training arethe a posteriori class probabilities.The function approximation viewpoint has recently thrown light on empirical behaviourof neural networks [8{11]. The �ndings have particularly dramatic implications on largescale problems (inputs of high dimensionality). Such problems notably arise in image andvision processing, but even more modest applications raise the question of the practica-bility of e�ectively controlling the approximation and estimation errors. The pragmatist'sanswer to these issues is to resort to heuristics in arbitrarily breaking the classi�cationproblem into a multistage process with simple architectures servicing each stage. Suchan approach is likely to compromise the optimality of the performance. In any case it�This work was supported by the Science and Engineering Research Council, UK (GR/J 89255).



does not avoid the requirement for interminable training e�orts to reach a reasonablesolution and for a multitude of architectural alternatives to be considered in order to gaincon�dence in the network being able to extract all the relevant information.These drawbacks are conspicuously in contrast with the functional characteristics of thehuman nervous system which can learn a pattern from one or a small number of trainingsamples. The learnt model is re�ned gradually only to cope with pattern class overlapsand ambiguity. The relative importance of stimuli in class de�nition is rapidly establishedand presumably re
ected in the synaptic strengths.In a recent work we have developed a Bayesian framework for designing cooperativedecision making processes which exploit observational evidence and contextual informa-tion relating to objects to be classi�ed [12,13]. This work evolved from earlier results incontextual decision making [14{16]. Most importantly, the pattern classi�cation processesdeveloped have been shown to map on conventional arti�cial neural network architectures[17,18]. The objective of the work was to establish a link which would facilitate theimplementation of the cooperative decision making processes on special purpose hard-ware neural net architectures that are becoming available. However, the implication ofthe relationship appears to be reaching far beyond this original goal. In this paper wedemonstrate that it can o�er an analytical route to designing neural networks as far asthe number of nodes and layers, node interconnections, the choice of nonlinearity for theactivation function and feedback mechanisms are concerned. An equally important resultof the work is that the proposed network training schemes can overcome the theoreti-cal requirements imposed by brute force function approximation methods. The trainingschemes allow the ANN designer to obtain a rough estimate of the ANN network weightsjust from one or very few examples of pattern classes to emulate the capability of thehuman nervous system.The principal idea of the approach is to represent each pattern to be classi�ed in termsof pattern primitives. The pattern classi�cation process then involves the identi�cationof these primitives. The bene�t of introducing pattern primitives is that one can thendescribe the measurement process model in terms of the conditional distributions ratherthan the unconditional ones, which should dramatically reduce the order of interactionsof the input stimuli. At a �rst glance this may appear to be possible only at the expenseof exponential complexity of interpretation, but it has been shown [12] that this is not thecase. The recognition problem complexity is at most of second order polynomial in termsof the number of these primitives and it is believed it can be substantially reduced bymeans of pruning or by the introduction of dictionaries of admissible label con�gurations.As a result the probabilistic analysis of the pattern classi�cation problem then allows theappropriate structure of the ANN to be identi�ed, together with the activation functionnonlinearities. It also provides guidelines for the initial choice of network weights and amechanism for their adaptation during training.The problem formulation involves the speci�cation of pattern primitives, their relationsand their respective distributions. The a posterior probability functions of pattern prim-itive labellings are �rst developed by means of probability calculus. Thus in contrastto conventional approaches these a posteriori probability functions are not approximateddirectly. Instead, these functions are expressed in terms of simple components that de�neand map on a neural net architecture.



We show that it is possible to exploit the relationship between the conditional proba-bility distributions of the relational measurements describing pattern primitives and theneural network weights. The nature of the relationship is �rst established. The networkweights are then determined from the statistical description of these measurement (inputstimuli) distributions. The statistical descriptors are obtained during training by meansof standard statistical inference techniques.The paper is organised as follows. First, two basic formulations of the problem oflabelling networks of objects are introduced in Section 2. The various contextual decisionmaking schemes that can be developed from the object centered formulation are overviewedin Section 3. In Section 4 we outline how object centered labelling schemes map on amultilayer perceptron-like architecture. Finally, Section 5 concludes with a summary ofthe paper.2. PROBLEM FORMULATIONLet us consider a set of objects aj; j = 1; : : : ; N arranged in a network with a particularneighbourhood system.Each object aj has an associated measurement vector xj. Each component of vector xjdenotes one of three types of measurements:1. Binary relation measurements Akji; k = 1; 2; : : : ; m between the jth and ith objects.2. Unary relation measurements ylj; l = 1; 2; : : : ; r from which the binary relations arederived.3. Unary relation measurements vij; i = 1; 2; : : : ; n which augment the observationalevidence about node j but do not serve as a basis for deriving binary relationmeasurements Akji.Let us arrange these measurements into vectors as follows:
Aj = 266666666664

Aj1...Aj(j�1)Aj(j+1)...AjN
377777777775 (1)

where Aji = [A1ji; : : : ; Amji ]T . For the unary relations we have yj = [y1j ; : : : ; yrj ]T andvj = [v1j ; : : : ; vnj ]T . Thus xj is an [m(N � 1) + r + n] dimensional vector which can bewritten asxj = 264 vjyjAj 375 (2)We wish to assign each object aj a label �j. Following the conventional Bayesianapproach, object ai would be assigned to class !r based on the information conveyed



by measurement vectors vi and yi according to the minimum error decision rule [6]. Incontrast, here we wish to decide about label �i using not only the information containedin unary relation measurements relating to object ai but also any context conveyed bythe network. In other words we wish to utilise also the binary relation measurements, i.e.the full measurement vector xi plus all the information about the other objects in thenetwork contained in xj; 8j 6= i. This is a general statement of the problem but in orderto develop contextual labelling schemes our formulation will have to be somewhat moreprecise.The �rst important issue to settle is whether we wish to aim at object centered ormessage centered interpretation. In object centered interpretation the emphasis is on onenode at a time. Contextual information is used to reduce the ambiguity of labelling asingle object. Note that object centered interpretation does not guarantee that the globalinterpretation makes sense. For example, individually most likely object categories in acharacter recognition problem will not necessarily combine into valid words. The use ofcontext merely reduces the chance of the global labelling being inconsistent.In contrast, message centered interpretation is concerned with getting the messageconveyed by sensory data right. In our text recognition problem the main objective ofmessage centered labelling would be to label characters so that each line of text gives asequence of valid words.The choice between object centered and message centered interpretation will dependin the �rst instance on the application in hand. For example, if we search for a speci�edobject in an image without requiring to understand the entire content of the image,object centered interpretation might be most appropriate. On the other hand, if globalunderstanding of sensory data is at stake, the labelling task should be posed as a messagecentered interpretation problem.Generally speaking, in message centered interpretation we search for a joint labelling�1 = !�1; �2 = !�2 ; : : : ; �N = !�N which explains observations x1;x2; : : : ;xN made on theobjects in the network. The most appropriate measure of �t between data and interpreta-tion (but by no means the only one) is the a posteriori probability P (�1 = !�1; : : : ; �N =!�N jx1; : : : ;xN). For the sake of brevity we shall denote this probability function asP (�1; : : : ; �N j x1;x2; : : : ;xN) whenever this short hand notation does not compromisethe clarity of exposition. The Bayesian approach of maximizing a posteriori probability(MAP) of joint labelling which is referred to in the literature as MAP estimation amountsto the following decision rule:assign �1 ! !�1; : : : ; �N ! !�N ifP (�1 = !�1; : : : ; �N = !�N jx1; : : : ;xN) = max
1;:::;
NP (�1; : : : ; �N jx1; : : : ;xN) (3)where 
i is the set of labels admitted by object ai. For simplicity we shall assume that8i; 
i = f!0; !1; : : : ; !Mg = 
, where !0 is the null label used to label objects for whichno other label is appropriate.The object centered counterpart computes instead P (�i = !�ijx1;x2; : : : ;xN), the aposteriori probability of label �i given all the observations. The main di�erence betweenmessage and object centered interpretation can be brought out by expressing both proba-



bilities using the Bayes formula. Starting with the a posteriori probability of joint labellingP (�1; : : : ; �N jx1;x2; : : : ;xN) = p(x1; : : : ;xN j�1; : : : ; �N )P (�1; : : : ; �N)p(x1; : : : ;xN) (4)we note that for given observations the joint probability density function value in thedenominator is �xed and therefore the left hand side is proportional to the product inthe numerator. The �rst term of the product, the conditional joint probability densityfunction of measurement vectors x1; : : : ;xN models the measurement process whereas thesecond term embodies our a priori knowledge of the likelihood of various combinations oflabels occurring. It is our global, world model.For the object centered labelling we can writeP (�i = !jx1; : : : ;xN) = p(x1; : : : ;xN j�i = !)P (�i = !)p(x1; : : : ;xN) (5)where P (�i = !) is the a priori probability of label �i taking value !. Again the denomi-nator in (5) can be dismissed. Expanding the �rst term of the numerator over all possiblelabellings in the usual fashion, i.e.p(x1; : : : ;xN j�i = !) ==X
1 : : : X
i�1 X
i+1 : : :X
N p(x1; : : : ;xN ; �1; : : : �i�1; �i+1 : : : ; �N j�i = !)=X
1 : : :X
i�1X
i+1: : :X
N p(x1; : : : ;xN j�1; : : : �i=! : : : ; �N )P (�1; : : : �i�1; �i+1 : : : ; �N j�i=!) (6)we �ndP (�i = !jx1; : : : ;xN) == P
1 : : :P
N p(x1; : : : ;xN j�1; : : : �i = ! : : : ; �N)P (�1; : : : �i = ! : : : ; �N)p(x1; : : : ;xN) (7)Thus computing the probability of a particular label ! on a single object ai amountsto scanning through all the possible combinations of labels �1; : : : ; �N with label �i set to! and summing up the corresponding products of the respective joint measurement andlabel probabilities.Inspecting the expressions for P (�1; : : : ; �N jx1;x2; : : : ;xN) and P (�i=!jx1; : : : ;xN) in(4) and (7) respectively reveals that they are both de�ned in terms of the same ingredi-ents, namely the a priori probability distribution of joint labelling, P (�1; : : : ; �N ) and theconditional probability density function p(x1; : : : ;xN j�1; : : : ; �N ). It is apparent that forany practical value of N and M it will not be feasible to apply techniques of statistical in-ference to estimate these probability distributions. However, in many practical situationssimplifying assumptions can be made to make the computation of the a posteriori proba-bilities feasible. In particular, an important and physically realistic assumption regardingthe unary measurement process distribution is that the outcomes of measurements areconditionally independent.p(v1;y1 : : : ;vN ;yN j�1; : : : �i; : : : ; �N) = NYi=1 p(vi;yij�i = !�i) (8)



Also, for binary relations we assume thatp(Ai1; : : : ; AiN j�1; : : : �i; : : : ; �N) =Yj 6=i p(Aijj�i; �j) (9)Finally, the idea of a dictionary model or a Markov random �eld model [12{15] can beused to simplify the prior probability of joint labelling P (�1; : : : �i = ! : : : ; �N ).3. PROBABILISTIC RELAXATIONUnder some mild conditional independence assumptions concerning measurements xj; yjand Aij; 8j the object centered labelling formulation (7) leads to an iterative probabilityupdating formula [12]:P (n+1) (�i !�i) = P (n) (�i !�i)Q(n) (�i !�i)P!�2
 P (n) (�i !�)Q(n) (�i !�) (10)where P (n)(�i !) denotes the probability of label !�i at object ai at the nth iterationof the updating process and the quantity Q(n)(�i  !) expresses the support the label�i  !� receives at the nth iteration step from the other objects in the scene, takinginto consideration the binary relations that exist between them and object ai. After the�rst iteration (n=1) the computed entity is the contextual a posteriori class probabilityP (�i = !�ijx1;x2; : : : ;xN). As n increases, the updating scheme drives the probabilisticlabelling into a hard labelling.The support Q(n)(�i = !�i) is de�ned asQ(n)(�i = !�i) == X!�j ;j2Ni 1p̂ (�i = !�i) 8<: Yj2Ni P (n) ��j = !�j� p �Aijj�i = !�i; �j = !�j�p̂ ��j = !�j� 9=;��P ��j = !�j ; 8j 2 Ni� (11)where p �Aijj�i = !�i; �j = !�j� is the compatibility coe�cient quantifying the mutualsupport of the labelling (�i = !�i ; �j = !�j). Ni denotes the index set of all nodesexcluding the node i, i.e. Ni = f1; 2; : : : ; i�1; i+1; : : : ; Ng. It is worth noting that, whenbinary relations are not used, the support function (11) becomes the standard evidencecombining formula developed in [14], i.e.Q(n)(�i = !�i) == X!�j ;j2Ni 1p̂ (�i = !�i) 8<: Yj2Ni P (n) ��j = !�j�p̂ ��j = !�j� 9=;� P ��j = !�j ; 8j 2 Ni� (12)On the other hand, when no additional unary relation measurements are available apartfrom the set used for generating the binary measurements, the support reduces toQ(n)(�i = !�i) == X!�j ;j2Ni 1p̂ (�i = !�i) 8<: Yj2Ni p �Aijj�i = !�i; �j = !�j�9=;P ��j = !�j ; 8j 2 Ni� (13)



The probability updating rule (10) in this particular case will act as an ine�cientmaximum value selection operator. Thus the updating process can be terminated afterthe �rst iteration, the maximum contextual a posteriori label probability selected and setto unity while the probabilities of all the other labels are set to zero.The support function (11) exhibits exponential complexity. In practice its use, depend-ing on application, could be limited only to a contextual neighbourhood in the vicinityof the object being interpreted. Such a measure is appropriate for instance in the caseof edge and line postprocessing, where the objects to be labelled are pixel sites. A smallneighbourhood, say a 3 by 3 window may be su�cient to provide the necessary contex-tual information. In any case, by iteratively updating the pixel label probabilities usingformula (10) contextual information would be drawn from increasingly larger neighbour-hoods of each pixel.A more dramatic, complementary reduction in the computational complexity is achievedby noting that in practice many potential label con�gurations in the contextual neigh-bourhood of an object are physically inadmissible. By listing the admissible labellings ina dictionary, the above support function can be evaluated by summing up only over theentries ��j = !k�j ; 8j 2 Ni� ; 8k in the dictionary, i.e.Q(n)(�i = !�i) == Z(!�i )Xk=1 1p̂ (�i = !�i) 8<: Yj2Ni P (n) ��j = !k�j� p �Aijj�i = !�i; �j = !k�j�p̂ ��j = !k�j� 9=;��P ��j = !k�j ; 8j 2 Ni� (14)where Z(!�i) denotes the number of dictionary entries with label �i set to !�i.In many labelling problems neither of the above simpli�cations of the support functionis appropriate. For instance, in correspondence matching tasks or object recognition allfeatures of an object interact directly with each other. Moreover, without measurements,no labelling con�guration is a priori more likely than any other. Then it is reasonable toassume that the prior probability of a joint labelling con�guration can be expressed asP ��j = !�j ; 8j 2 Ni� = Yj2Ni p̂ ��j = !�j� (15)Substituting (15) into (11) and noting that each factor in the product in the above ex-pression depends on the label of only one other object apart from the object ai underconsideration, we can simplify the support computation asQ(n)(�i !�) = Yj2Ni X!�2
P (n) (�j !�) p (Aij j �i !�; �j !�) (16)It is interesting to note that through this simpli�cation the exponential complexity of theproblem is eliminated.The iteration scheme can be initialised by considering as P (0)(�i !�i) the probabilitiescomputed by using the unary attributes only, i.e.P (0)(�i !�i) = P (�i !�i jvi;yi) (17)We discuss this initialisation process in detail elsewhere [12].



4. NEURAL NET IMPLEMENTATIONThe aim of this section is to demonstrate how the cooperative processes discussed inSection 3 can be mapped on a neural net architecture. The purpose of the mapping is atleast twofold. First of all, neural net computation has inspired and motivated consider-able activity in specialist hardware and software architecture design and implementation.Software, and hardware systems, including VLSI chips, have been developed to implementvarious families of neural networks. A successful mapping of contextual decision makingprocesses on such systems would facilitate their wide applicability.The second, and perhaps more signi�cant purpose is to argue that the mapping pro-cess could o�er a route to neural network design which is not plagued by the typicalproblems associated with the development of neural network solutions to pattern classi�-cation tasks: lack of guidelines for the choice of architecture and node connectivity, lackof data, unacceptably long training phase, and last but not least, the lack of criteria forthe selection of the node activation functions and for the weight initialization.Rather than attempting a comprehensive coverage of all the cooperative processes dis-cussed in the paper, we shall illustrate the basic ideas on a speci�c contextual labellingalgorithm. In particular, we shall consider the probabilistic relaxation scheme in (10)with the support function given by formula (16). The neural network performing thesame computation is presented in Figure 1.It is basically a multilayer perceptron with two main layers and an auxiliary layer whichperforms a normalisation computation to maintain the network outputs in the zero - onerange and ensuring that the outputs representing label excitation for each object primitivesum up to unity. There are only N such auxiliary units as there are N object primitives tobe labelled. The inputs Pij to the multilayer perceptron are computed by a noncontextualarti�cial neural network which at its input is stimulated by unary relation measurementsobserved for each object primitive. We shall not dwell on the methodology that can beused for designing such a neural network as the number of unary measurements one dealswith is normally relatively small and therefore the neural net design problems identi�edearlier are not applicable. The outputs Pij of this initializing network correspond to the aposteriori (noncontextual) label probabilities for the object primitives based on the unaryrelations.The main network has the normal characteristics of a typical multilayer perceptrondesign. The number of units in the second layer expands whereas for the �nal layer itcontracts. In our design the number of output units is the same as the number of inputunits to the network with a separate unit for each object primitive/label combination.The weights applied to the links between the input nodes and the nodes of the secondlayer are de�ned by the binary relation probabilities which can be easily estimated duringtraining by techniques of statistical inference rather than weight adaptation. The outputof each node qjki represents the support for label k on object primitive j from objectprimitive i. Note that the activation function of the units in the second layer is the logfunction and not the usual sigmoid. The connections from the second layer to the thirdlayer have no weights associated with them. The activation function of the units in thisthird layer is the exponential function.A distinguishing characteristic of the network is the feedback link from the normalised
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Figure 1:   Multilayer perceptron implementation of the probabilistic relaxation scheme

with the support function given by equation (16)



output to the input. If this link is broken, the output units generate the contextualprobabilities of object primitive labelling corresponding to a single iteration of the labelupdating process in (10). The feedback forces one of the outputs associated with eachobject primitive to unity and all the others to zero.We have thus demonstrated that a neural network for a complex pattern classi�cationproblem can be designed by analysing the nature of the problem �rst. The analysismakes it possible to incorporate realistic assumptions into the solution of the problem.This in turn often facilitates a dramatic reduction in complexity of the classi�cationproblem. Thus instead of having to approximate a posteriori probability functions inhigh dimensional observation spaces for which a massive architecture of unknown nodeconnectivity would be required, one can express these a posteriori probabilities in termsof functions of simple components. This explicitly speci�es the required architecture ofthe neural network, node connectivity and the functional form of the activation functions.But even more importantly, the training of such a network becomes a simple task ofinferring the probability distributions of the relevant measurements in low dimensionalspaces. A �rst guess of these distributions can easily be made from the presentation ofvery few prototypical patterns to the system. In this sense the training capability of theproposed approach emulates closely that of the human central nervous system which alsocan learn complex patterns very e�ciently from just a few experiences.5. CONCLUSIONSIn the paper, it was demonstrated that probabilistic relaxation labelling processes canbe mapped onto a neural net architecture, in particular the multilayer perceptron. Thishas the important implication that cooperative decision making schemes can providean approach to designing arti�cial neural networks with the bene�t of simple training,and of the ANN architecture and activation functions being uniquely speci�ed. Thedesign approach appears to o�er an attractive alternative to the conventional ANN designtechniques.REFERENCES1. R P Lippmann, An introduction to computing with neural nets, IEEE ASSP Maga-zine, 4, 4-22, 1987.2. D R Hush and B G Horne, Progress in supervised neural networks, IEEE SignalProcessing Magazine, 10, 8-39, 1993.3. G A Carpenter and S Grossberg, A self-organizing neural network for supervisedlearning, recognition and prediction, IEEE Communications Magazine, 38-49, 1992.4. F Fogelman Soulie, B Lamy and E Viennet, Multi-modular neural network architec-tures for pattern recognition: Applications in optical character recognition and humanface recognition, Int. Jnl of Pattern Recognition and Arti�cial Intelligence, 1993.5. V Cherkasky and H Wechsler, From statistics to neural networks, Springer Verlag,Berlin, 1994.6. P A Devijver and J Kittler, Pattern recognition: A statistical approach, Prentice-Hall,Englewood Cli�s, NJ, 1982.
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